Mesoscopic Structures Reveal the Network Between the Layers of Multiplex Datasets
نویسندگان
چکیده
Multiplex networks describe a large variety of complex systems, whose elements (nodes) can be connected by different types of interactions forming different layers (networks) of the multiplex. Multiplex networks include social networks, transportation networks, or biological networks in the cell or in the brain. Extracting relevant information from these networks is of crucial importance for solving challenging inference problems and for characterizing the multiplex networks microscopic and mesoscopic structure. Here we propose an information theory method to extract the network between the layers of multiplex data sets, forming a "network of networks." We build an indicator function, based on the entropy of network ensembles, to characterize the mesoscopic similarities between the layers of a multiplex network, and we use clustering techniques to characterize the communities present in this network of networks. We apply the proposed method to study the Multiplex Collaboration Network formed by scientists collaborating on different subjects and publishing in the American Physical Society journals. The analysis of this data set reveals the interplay between the collaboration networks and the organization of knowledge in physics.
منابع مشابه
Utilizes the Community Detection for Increase Trust using Multiplex Networks
Today, e-commerce has occupied a large volume of economic exchanges. It is known as one of the most effective business practices. Predicted trust which means trusting an anonymous user is important in online communities. In this paper, the trust was predicted by combining two methods of multiplex network and community detection. In modeling the network in terms of a multiplex network, the relat...
متن کاملA Deep Model for Super-resolution Enhancement from a Single Image
This study presents a method to reconstruct a high-resolution image using a deep convolution neural network. We propose a deep model, entitled Deep Block Super Resolution (DBSR), by fusing the output features of a deep convolutional network and a shallow convolutional network. In this way, our model benefits from high frequency and low frequency features extracted from deep and shallow networks...
متن کاملCentralities of Nodes and Influences of Layers in Large Multiplex Networks
We formulate and propose an algorithm (MultiRank) for the ranking of nodes and layers in large multiplex networks. MultiRank takes into account the full multiplex network structure of the data and exploits the dual nature of the network in terms of nodes and layers. The proposed centrality of the layers (influences) and the centrality of the nodes are determined by a coupled set of equations. T...
متن کاملFunctional Multiplex PageRank
Recently it has been recognized that many complex social, technological and biological networks have a multilayer nature and can be described by multiplex networks. Multiplex networks are formed by a set of nodes connected by links having different connotations forming the different layers of the multiplex. Characterizing the centrality of the nodes in a multiplex network is a challenging task ...
متن کاملWeighted Multiplex Networks
One of the most important challenges in network science is to quantify the information encoded in complex network structures. Disentangling randomness from organizational principles is even more demanding when networks have a multiplex nature. Multiplex networks are multilayer systems of [Formula: see text] nodes that can be linked in multiple interacting and co-evolving layers. In these networ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 92 4 شماره
صفحات -
تاریخ انتشار 2015